Sunshine Coast Regional District

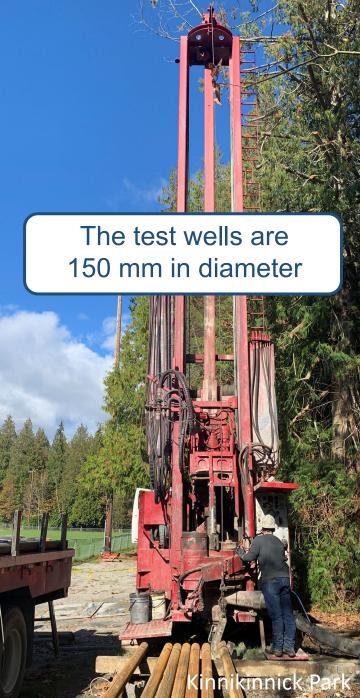
Water Supply Plan Feasibility Study Long-Term Ground Water Supply Sources

Test Well Drilling Program Results

Ineke Kalwij, Ph.D., P.Eng.

Project Manager, Senior Hydrogeological Engineer

Kalwij Water Dynamics Inc.


Test Well Drilling Locations

Test Well Drilling & Well Testing

Sep. 3, 2024 – Feb. 21, 2025.

Location	Formation	Drilling	Testing	Well Depth	Depth to bedrock
				m	m
1. RC Fire Hall	rock	Sep. 2024	-	274	0
2. Airport - Hilltop Rd.	sand & gravel, bedrock	Sep. 2024	Nov. 2024	186	34
3. Kinnikinnick Park	sand & gravel, bedrock	Oct. 2024	-	247	73
4. Whitaker Park	sand & gravel, bedrock	Nov. 2024	-	195	89
					_
5. Sechelt shíshálh Hospital	sand & gravel	Jan. 2025	Feb. 2025	83	87

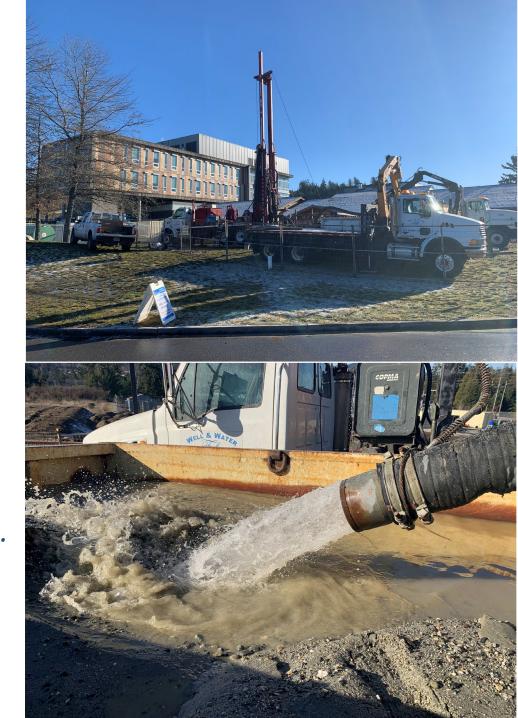
Well drilling contractor: Fyfe Well & Water Services.

Test Well Drilling & Well Testing

Sep. 3, 2024 – Feb. 21, 2025.

Location	Well Name	Aquifer	Est. Yield	
			L/s	
1. RC Fire Hall	TW-1 (24)	fractured rock	0.95	
2. Airport - Hilltop Rd.	TW-2 (24)	fractured rock	*4.6	
3. Kinnikinnick Park	TW-3 (24)	fractured rock	1.2	
4. Whitaker Park	TW-4 (24)	sand & gravel	2.2	
5. Sechelt shíshálh Hospital	TW-5 (25)	sand & gravel	*22+	

^{*} Based on pumping tests.



TW-5(25) | Sechelt | shíshálh Hospital Site

Site-Specific Hydrogeology:

- ✓ Water-bearing zones:
 - 24 57 m-bgs (sand and gravel).
 - 64 84 m-bgs (sand and gravel).
- ✓ Lower permeable zone:
 - 57 64 m-bgs (sand, no significant production).
- ✓ Bedrock @87.5 m-bgs (granite rock).

TW-5(25) – Well Screen | Length: 6 m.

72-hour Pumping Test TW-5(25) | Sechelt | shíshálh Site

Key Findings of the 72-hour Pumping Test

☐ Average discharge rate: 22.2 L/s*.

☐ Production: 5.7 ML over a period of 72 hours.

- ☐ Drawdown: 3.96 m (~ 8% of the available water column).
- ☐ Potentially a very productive aquifer (at the tested location).

^{*} which was the maximum pumping rate possible due to physical limitations of the pump-motor assembly that fits in a 150 mm well.

Key Findings of the Pumping Test

□ Water quality meets Canadian Drinking Water Quality Guidelines (CDWQG).

- Selected parameters:
 - **Arsenic**: 0.0002 mg/L (MAC = 0.01 mg/L)*.
 - **❖ Iron**: 0.014 mg/L (AO = 0.3 mg/L).
 - ❖ Manganese: < 0.001 mg/L (AO = 0.02 mg/L; MAC = 0.12 mg/L).</p>
 - * Electrical conductivity: 158 μS/cm.
 - * Total dissolved solids: 79 mg/L.

^{*} Health Canada issued a draft revised guideline (issued March 2025) reducing MAC for arsenic to 0.005 mg/L.

Key Findings of the Pumping Test

No well interference observed at the monitoring wells (Heidelberg Materials wells).

- ☐ No measurable evidence of saltwater intrusion.
 - Based on water quality results.

Key Findings of the Pumping Test

- ☐ Calculated (theoretical) long-term yield: 187 L/s.
- ☐ To be interpreted with some caution given that results are based on a pumping test rate of 22 L/s, and the aquifer response to higher-capacity pumping is currently unknown.

Expected Wellfield Capacity

- At least: 74 L/s.
- High-capacity testing needed to confirm wellfield capacity & long-term yield.

Preliminary Wellfield Design Considerations

- ☐ Production wells: 2.
- ☐ Casing diameter: 400 mm.
- ☐ Well depth: 85 m.
- ☐ Pump station (controls & disinfection) location TBD.
- Backup Generator (genset).

Connect to Chapman Water System: tie-in to existing water main.

Sechelt | shíshálh

Hospital Site

Concluding Remarks

- ☐ Expected wellfield capacity of at least 74 L/s.
- ☐ A reasonable assumption, based on the calculated theoretical long-term yield of 187 L/s.
- ☐ High-capacity pumping tests are required to confirm wellfield capacity.
- ☐ Potentially a very productive aquifer at this location.
- Excellent water quality (meets CDWQG).

Sechelt | shíshálh Hospital Site

Recommendations

- Advance to the next phase by drilling two production-sized test wells to facilitate high-capacity pumping tests:
 - ✓ To confirm wellfield capacity, long-term yield, and other considerations (possible well interference, risk of saltwater intrusion and impact on streams).
 - ✓ To inform future decisions and provide data for continued engagement with members of shíshálh Nation and VCH, and other stakeholders.

Recommendations (Next Steps)

- ☐ Submit a groundwater licence application for 74 L/s to the Ministry of Water, Land and Resource Stewardship.
- □ Design and implement a groundwater monitoring program for TW-5(25) including water quality and groundwater levels.
- ☐ Conduct a Groundwater at Risk of Containing Pathogens (GARP) assessment in support of determining disinfection requirements.
- ☐ Continue engagement with members of shishalh Nation and Vancouver Coastal Health.

